ar X iv : 0 90 2 . 33 48 v 1 [ m at h . R T ] 1 9 Fe b 20 09 On Lie algebras associated with representation directed algebras
نویسنده
چکیده
Let B be a representation-finite C-algebra. The Z-Lie algebra L(B) associated with B has been defined by Ch. Riedtmann in [17]. If B is representation-directed there is another Z-Lie algebra associated with B defined by C. M. Ringel in [20] and denoted by K(B). We prove that the Lie algebras L(B) and K(B) are isomorphic for any representation-directed C-algebra B. 2000 Mathematics Subject Classification: 17B60, 16G20, 16G70.
منابع مشابه
ar X iv : 0 90 1 . 32 05 v 2 [ m at h . R T ] 1 9 Ju n 20 09 DOUBLE AFFINE LIE ALGEBRAS AND FINITE GROUPS
We begin to study the Lie theoretical analogs of symplectic reflection algebras for Γ a finite cyclic group, which we call “cyclic double affine Lie algebra”. We focus on type A : in the finite (resp. affine, double affine) case, we prove that these structures are finite (resp. affine, toroidal) type Lie algebras, but the gradings differ. The case which is essentially new is sln(C[u, v]⋊Γ). We ...
متن کاملar X iv : m at h / 06 11 64 6 v 1 [ m at h . R A ] 2 1 N ov 2 00 6 NATURALLY GRADED 2 - FILIFORM LEIBNIZ ALGEBRAS
The Leibniz algebras appear as a generalization of the Lie algebras [8]. The classification of naturally graded p-filiform Lie algebras is known [3], [4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0 (trivial) and p = 1 [1]. In this work we get the classification of naturally graded no...
متن کاملar X iv : 0 70 9 . 24 13 v 1 [ m at h . R A ] 1 5 Se p 20 07 HOM - LIE ADMISSIBLE HOM - COALGEBRAS AND HOM - HOPF ALGEBRAS
The aim of this paper is to generalize the concept of Lie-admissible coalgebra introduced in [2] to Hom-coalgebras and to introduce Hom-Hopf algebras with some properties. These structures are based on the Hom-algebra structures introduced in [12].
متن کاملar X iv : 0 90 3 . 54 33 v 1 [ m at h . Q A ] 3 1 M ar 2 00 9 EXAMPLES OF HOMOTOPY LIE ALGEBRAS
We look at two examples of homotopy Lie algebras (also known as L∞ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators ∆ to verify the homotopy Lie data is shown to produce the sa...
متن کاملar X iv : 0 81 1 . 47 25 v 2 [ m at h . R A ] 1 2 M ay 2 00 9 On the deformation theory of structure constants for associative algebras
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied.
متن کامل